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Extension of an explicit �nite volume method to large time
steps (CFL¿1): application to shallow water �ows

J. Murillo‡, P. Garc��a-Navarro∗;†, P. Brufau§ and J. Burguete¶

Fluid Mechanics; CPS; University of Zaragoza; Zaragoza; Spain

SUMMARY

In this work, the explicit �rst order upwind scheme is presented under a formalism that enables the
extension of the methodology to large time steps. The number of cells in the stencil of the numerical
scheme is related to the allowable size of the CFL number for numerical stability. It is shown how to
increase both at the same time. The basic idea is proposed for a 1D scalar equation and extended to 1D
and 2D non-linear systems with source terms. The importance of the kind of grid used is highlighted
and the method is outlined for irregular grids. The good quality of the results is illustrated by means
of several examples including shallow water �ow test cases. The bed slope source terms are involved
in the method through an upwind discretization. Copyright ? 2005 John Wiley & Sons, Ltd.
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0. INTRODUCTION

Upwind methods have proved very successful in computational �uid dynamics (CFD), mainly
in connection with aerodynamics where they have gained widespread acceptance [1]. They are,
perhaps, the most widely researched algorithms in connection with unsteady �ow simulation
codes. At the same time, numerical methods to predict water pro�le, velocities and discharges
in hydraulic systems modelling have become a common tool. Upwind methods in particular
are becoming increasingly popular in the hydraulics literature and have proved a suitable way
to discretize the shallow water equations [2–5]. Being a hyperbolic system of conservation
laws, they are a good candidate for application of the techniques developed for the Euler
equations in gas dynamics.
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Finite di�erence schemes for time-dependent advective equations are traditionally divided
in two main groups, according to the way of discretization used for the time derivative, as
explicit and implicit. Implicit schemes o�er numerical stability (not always unconditional,
however) at the extra cost of having to deal with the resolution of an algebraic, and often
non-linear, system with as many unknowns as grid points at every time step. On the other
hand, conceptual simplicity is the most valuable characteristic of the former in which variables
at a future time can be independently evaluated at every single point. The allowable time step
size is nevertheless restricted in the explicit case by stability reasons to ful�l the Courant–
Friedrichs–Lewy (CFL) condition [6].
It is possible to relax the condition over the time step size when using explicit schemes.

A generalization of the �rst order explicit upwind and Roe’s method, modi�ed to allow
large time steps, was explored by Leveque [7, 8] �rst in the scalar non-linear case and then
adapted to systems of equations. It becomes stable for CFL’s larger than 1 and provides
an accurate and correct solution of shocks. In the case of a linear problem, it is reduced
to a linear interpolation scheme. The technique is devised to cope well with �ow transients
and even with discontinuities far from the boundaries, being able to give a resolution of the
shocks even sharper for CFL¿1. Although the technique approximates linearly non-linear
interactions, it is able to correctly reproduce the discontinuities of interest in common hy-
draulic calculations allowing the use of time steps not restricted by the usual CFL stability
conditions. Other approaches have been envisaged and applied to di�erent non-linear problems
in References [9–12].
First in this paper, we shall describe the algorithm for the 1D scalar case as well as for 1D

systems of equations. The performance of the scheme is evaluated to solve the shallow water
equations �rst for the ideal dam break problem because it is a classical example of non-
linear �ow where shocks and rarefactions appear and, at the same time, has an exact solution.
The way to deal with bed slope and friction source terms and to incorporate them into the
proposed procedure will be also presented starting by the 1D approach. A problem with
analytical solution of steady open channel �ow with bed slope and friction is used in this
part as validation test case.
In the second part of the work the method will be extended to a 2D �nite volume approach.

The additional di�culties met when adapting it to unstructured meshes will be identi�ed
pointing out the importance of the grid irregularity. Apart from a 2D scalar advection example,
the extended time step explicit scheme will be applied to shallow water problems of di�erent
types including laboratory test cases with experimental data as well as a steady problem over
variable bottom with analytical solution and transient �ow over irregular bed.

1. NUMERICAL SCHEME. ONE-DIMENSIONAL CASE

1.1. Scalar equation

The numerical resolution of the scalar di�erential equation

ut + f(u; x)x=0; �=fu (1)

in a �xed regular discrete mesh {xi; i=1; N}, letting aside grid-adaption considerations [13],
by means of a �rst order upwind scheme with forward Euler time stepping, is based on a

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:63–102



EXTENSION OF AN EXPLICIT FINITE VOLUME METHOD TO LARGE TIME STEPS 65

piecewise constant approximation of the function u. The value of the average discrete celerity
�̃i+1=2 at each interface (i; i+1) de�nes the �ux di�erences as contributions that may emerge
from the interface according to the sign of �̃i+1=2:

�f±
i+1=2 = �̃

±
i+1=2�ui+1=2 (2)

so that the function at each cell node i is updated in one time step �t, according to the
incoming contributions from the left or right interfaces

un+1i = uni − �t
�x
(�f+i−1=2 + �f

−
i+1=2) (3)

where �x is the regular length of the spatial interval between nodes. Usually, a numerical
�ux is de�ned and the above is re-expressed as

un+1i = uni − �t
�x
(f∗
i+1=2 − f∗

i−1=2) (4)

with

f∗
i+1=2 =

1
2(fi+1 + fi)− 1

2 |�̃i+1=2|�ui+1=2 (5)

This is a �nite volume point of view that updates the value of the function at the cell as a
result of the net �ux through the cell edges. There is an alternative way of considering the
situation as centred at the interfaces and looking where the contributions go. Always at the
interface (i; i + 1), a signal �i+1=2�ui+1=2 = �t

�x �̃i+1=2�ui+1=2 is de�ned and the rule to follow is
[7]

if �̃i+1=2¿ 0 ⇒ �i+1=2�ui+1=2 updates i + 1

if �̃i+1=2¡ 0 ⇒ |�i+1=2|�ui+1=2 updates i
(6)

where �i+1=2 = (�t=�x)�̃i+1=2 is a dimensionless coe�cient.
Both approaches (3) and (4) are equivalent and equally simple for the case CFL¡1, where

in this case

CFL=
�t
�tmax

; �tmax = min

{
�x

|�̃i+1=2|

}
i=1;NCELL

(7)

being NCELL the total number of cells. This stability condition is related to the maximum
amount of information that the pair of cells in the stencil of the scheme can exchange in one
time step. The second approach as in (6) is preferable to extend the scheme to CFL¿1. As
described by Leveque [7, 8], in the case of using a large time step, more cells get involved.
The interface contribution that de�nes the basic explicit conservative method (3) is split in
several pieces, here called waves, depending on the size of the time step and these waves are
transported to the cells according to the following algorithm:
When �̃i+1=2¿0

�ui+1=2 updates i + 1; : : : ; i + �i+1=2

(�− �)i+1=2�ui+1=2 updates i + �i+1=2 + 1
(8)
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and when �̃i+1=2¡0

�ui+1=2 updates i; : : : ; i + �i+1=2 + 1

|�− �|i+1=2�ui+1=2 updates i + �i+1=2
(9)

where �i+1=2 = int(�i+1=2). When CFL61, the basic scheme is recovered and it is important
to note that in (8) and (9) the dimensionless coe�cients are all smaller or equal to 1 hence
ensuring that the solution will not be ampli�ed. The scheme so constructed is explicit and
conservative in the same sense as (3) is.
Figure 1 shows how the information is distributed to several cells when �̃i+1=2 is negative

(left) and when �̃i+1=2 is positive (right) and both values are used to update the information
in the cells. All the cell values are updated at the end of the process of distribution of the
di�erent contributions.

1.1.1. Boundary treatment. In open boundaries, the boundary cell receives the information
furnished by the neighbour cells according to the scheme provided in (8) or (9). Some of
the contributions cross the boundaries and do not a�ect the updated solution of the boundary
cell. The next example is intended to clarify how, despite the method does not use the signals
that cross the downstream boundary, the method remains conservative and the �nal solution
is correct. Figure 2 displays a simple uniform grid of only three cells, one interior and two
boundary cells. The initial function u is advected with a constant and uniform velocity �¿0,
from time t n to time t n+2 = t n+2�t. The upstream condition is u(1; t)= ua. On the upper part
of the �gure, the left column (a), shows the procedure in the two time steps using CFL=1
whereas the right column (b), shows the procedure in one single time step using CFL=2. In
the lower part of the �gure, (c) displays the solution reached by the two calculations at the
�nal time. It is clear that, when CFL=1, two steps are involved and both are conservative:

(�uni+1=2 + �u
n
i+3=2)�x= �(u

n
1 − un3)�t ⇒ �uni+1=2 + �u

n
i+3=2 = u

n
1 − un3 (10)

(�un+1i+1=2 + �u
n+1
i+3=2)�x= �(u

n+1
1 − un+13 )�t ⇒ �un+1i+1=2 + �u

n+1
i+3=2 = u

n+1
1 − un+13 (11)

Figure 1. Distribution of the signals for di�erent signs of the discrete velocity.
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Figure 2. (a) Signal distribution with CFL=1; (b) signal distribution with CFL=2;
and (c) solution at t n+2 = t n + 2�t.

When using CFL=2, only one conservative step is used:

(2�uni+1=2 + 2�u
n
i+3=2)�x= �(u

n
1 − un3)2�t ⇒ �uni+1=2 + �u

n
i+3=2 = u

n
1 − un3 (12)

In the case of zero �ow or closed boundaries, an accumulation technique is proposed. Let us
consider �rst the upstream boundary and the contributions travelling from interface i + 1=2
(�̃i+1=2¡0). If the value of i + � is less than 1, it means that some of the signals from cell
edge i + 1=2 would go out of the upstream end of the domain. As the solid wall condition
requires that no information crosses the boundary and the method must remain conservative,
all these contributions are accumulated at the upstream boundary cell. Therefore, in this case,
the value of �ui+1=2 is stored at cell 1, |�− i+1| times. On the other hand, the contributions
arriving from interface i + 1=2 to the downstream cell N are considered (�̃i+1=2¿0). When
the value of i + � + 1 exceeds the number of the last cell, N , the quantity �ui+1=2 must be
stored at cell N , i + 1 + � − N times. Otherwise, the method does not remain conservative.
Both situations are sketched in Figure 3.

1.1.2. Irregular mesh. When using an irregular mesh things are di�erent. Considering �xi
the length of the cell centred at node i, the �nite volume formulation of (3) is

un+1i = uni − �t
�xi

(�f+i−1=2 + �f
−
i+1=2) (13)
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Figure 3. Accumulation of signals at the upstream (left) and downstream (right) boundaries.

and the local or cell edge dimensionless number is rede�ned as

�i+1=2 =
�t
�xi+s

�̃i+1=2 s=
1
2
(1 + sign(�̃i+1=2)) (14)

so that the above procedure is extended following:
if �̃i+1=2¿0

�ui+1=2 updates i + 1

�xi+1
�xi+j

�ui+1=2 updates i + j; j=2; : : : ; �i+1=2

(�− �)i+1=2 �xi+1�xi+�+1
�ui+1=2 updates i + �i+1=2 + 1

(15)

else if �̃i+1=2¡0

�ui+1=2 updates i

�xi
�xi+j

�ui+1=2 updates i + j; j=−1; : : : ; �i+1=2 + 1

|�− �|i+1=2 �xi�xi+�
�ui+1=2 updates i + �i+1=2

(16)

where again �i+1=2 = int(�i+1=2). In order to ensure the good behaviour of the numerical solution
in this case, the dimensionless coe�cients in (15) and (16) must always be kept smaller or
equal to one. This is guaranteed provided that the de�nition of �tmax given in (7) is carefully
generalized to the irregular case. If (7) is extended to

�tmax = min

{
�xi

|�̃i+1=2|

}
i=1;NCELL

(17)
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The resulting value does not ensure the stability required. Instead, a two-step search of the
reference time step size is proposed. First, the reference time step size is found for every cell
mesh taking into account the stencil for each CFL value

�tmax; i=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min

{
�xi;�xi+1;�xi+2; : : : ;�xi+�+1

|�̃i+1=2|

}
if �̃i+1=2¿0

min

{
�xi+1;�xi;�xi−1; : : : ;�xi+�

|�̃i+1=2|

}
if �̃i+1=2¡0

(18)

Then, the minimum value among all of them is chosen.

�tmax = min{�tmax; i}i=1;NCELL (19)

1.2. Scalar equation with source terms

If a source term s= s(u; x) is added to the scalar equation (1),

ut + f(u; x)x= s(u; x) (20)

the problem can be discretized using a regular grid and assuming that the �ux derivative and
the source term can be decomposed in a similar manner [4, 14] as

un+1i = uni − �t
�x

(�f+i−1=2 + s
+
i−1=2 + �f

−
i+1=2 + s

−
i−1=2) (21)

with

s±i+1=2 =
1
2(1± sgn(�̃±

i+1=2))si+1=2 (22)

The contributions from the source terms are also evaluated at each cell interface depending
on the value of the average velocity �̃i+1=2. In order to generalize (21) to CFL¿1 numbers,
the scheme is written in a more compact way:

un+1i = uni − (�+i−1=2�ui−1=2 + �+i−1=2�t + �−i+1=2�ui+1=2 + �−
i+1=2�t) (23)

where

�±i∓1=2 =
�t
�x
�̃±
i∓1=2; �±

i∓1=2 =
1
�x

s±i∓1=2 (24)

that can be rewritten as

un+1i = uni − (�+i−1=2�ui−1=2 + �+i−1=2(�i−1=2�t1 + �t2)i−1=2 + �−i+1=2�ui+1=2

+�−
i+1=2(�i+1=2�t1 + �t2)i+1=2) (25)

where two new time variables, devoid of physical meaning, are de�ned, �t1 and �t2, at each
interface:

�t1; i±1=2 =
�x

|�̃i±1=2|
; �t2; i±1=2 =�t1|�− �|i±1=2 (26)
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Hence, the algorithm to propagate the signals to the surrounding cells is
When �̃i+1=2¿0

�ui+1=2 + (��t1)i+1=2 updates i + 1; : : : ; i + �i+1=2

(�− �)i+1=2�ui+1=2 + (��t2)i+1=2 updates i + �i+1=2 + 1
(27)

and when �̃i+1=2¡0

�ui+1=2 + (��t1)i+1=2 updates i; : : : ; i + �i+1=2 + 1

|�− �|i+1=2�ui+1=2 + (��t2)i+1=2 updates i + �i+1=2
(28)

For the case CFL¡1, �t2 =�tmax. Therefore, the initial philosophy developed by Leveque [7]
and also used by [15] is followed introducing a source term in the equation. When solid wall
boundaries are present, the accumulation technique described in the above section is used
including the source terms as well. The algorithm in (27), (28) must be modi�ed to include
the in�uence of the di�erent cell sizes, as in (15), (16) in case of using an irregular grid.

1.3. One-dimensional systems of equations with source terms

Let us consider a hyperbolic system with source terms in the form

Ut + Fx=S(x;U); A=
dF
dU

(29)

Provided that Roe’s linearization is used to decouple the hyperbolic system, an approximate
matrix A∗ can be built whose eigenvalues �̃m and eigenvectors em can be used to express the
�ux di�erence as a sum of waves [1]:

�Ui+1=2 =Ui+1 −Ui=
∑
m
(�mem)i+1=2 =

∑
m
�Umi+1=2

�Fi+1=2 = Fi+1 − Fi=
∑
m
(�̃m�mem)i+1=2 =

∑
m
(�̃m�Um)i+1=2

(30)

and to discretize the source terms as well [3, 4]

Si+1=2 =
∑
m
(�mem)i+1=2 =

∑
m
Smi+1=2 (31)

so that, in a regular grid, the cells are updated following the scheme

Un+1i =Uni − �t
�x
(�F+i−1=2 + S

+
i−1=2 + �F

−
i+1=2 + S

−
i−1=2) (32)

where

Sm±
i+1=2 =

1
2(1± sgn(�̃mi+1=2))Smi+1=2 (33)

Therefore, the following can be written:

Un+1i =Uni −
(∑
m
(��U)m+i−1=2 +

∑
m
Z+mi−1=2�t +

∑
m
(��U)m−

i+1=2 +
∑
m
Z−m
i+1=2�t

)
(34)
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with

�m±
i∓1=2 =

�t
�x
�̃m±
i∓1=2 and Zm±

i∓1=2 =
1
�x
Sm±
i∓1=2

The basic idea is again to calculate �U at every interface and propagate the di�erent m waves
according to the sign of their celerities (eigenvalues) and the values of the local parameter.
For instance, for each m component of �Ui+1=2, �Umi+1=2, the following is set:
When �̃mi+1=2¿0

�Umi+1=2 + (Zm�tm1 )i+1=2 updates i + 1; : : : ; i + �mi+1=2

(�− �)�Umi+1=2 + (Zm�tm2 )i+1=2 updates i + �mi+1=2 + 1
(35)

When �̃mi+1=2¡0

�Umi+1=2 + (Zm�tm1 )i+1=2 updates i; : : : ; i + �mi+1=2 + 1

|�− �|�Umi+1=2 + (Zm�tm2 )i+1=2 updates i + �mi+1=2
(36)

where �mi+1=2 = int(�
m
i+1=2), �t

m
1 =�x=|�̃mi+1=2| and �tm2 = |�− �|mi+1=2�tm1 .

1.4. Application to 1D shallow water �ow

The 1D shallow water equations are accepted to model a certain kind of free surface �ow [5].
In case of a unit width rectangular cross section open channel �ow, the conservative form of
the system of equations can be expressed as in (26) with

U=

(
h

hu

)
; F=

⎛
⎜⎝

hu

hu2 + g
h2

2

⎞
⎟⎠ ; S=

(
0

gh(S0 − Sf)

)
(37)

where h represents the water depth, g is the acceleration of the gravity and u is the average
component of the velocity along the x direction. The source terms in the momentum equation
are the bed slope along the x-axis and the friction losses

S0 =−@z
@x
; Sf=

n2Q|Q|
A10=3

P4=3 (38)

where Sf is expressed in terms of the Manning’s roughness coe�cient n, the wetted area A,
and the wetted perimeter P. The Jacobian form and properties can be found in several refer-
ences [3, 4] and will not be repeated here.
The source term vector S is treated in two parts: the bottom variations B and the friction

term R, S=B+R. As the slope part contains a spatial derivate an upwind approach is adopted
to model the bottom variations in order to ensure the best balance with the �ux terms at least
in steady-state cases [4]. The friction term R is discretized in a pointwise manner, so that the
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�nal proposed expression for the numerical scheme is

Un+1i =Uni −
(

2∑
m=1
(��U)m+i−1=2 +

2∑
m=1

Zm+i−1=2�t

+
2∑
m=1
(��U)m−

i+1=2 +
2∑
m=1

Zm−
i+1=2�t

)
+�tRni (39)

This is actually the basic Roe scheme formulated for the 1D shallow water equations. As it is
well known, the basic explicit scheme requires some kind of correction called entropy �x, in
order to avoid non-physical discontinuities near sonic points. As the proposed method is only
an extension, the same entropy correction must be applied to the local advection velocities in
those cases.
To extend the scheme to higher CFL the rule presented in (35) and (36) is used, and

once the signals are distributed, the friction is computed pointwise and only once at cell i.
The entropy correction, when necessary, is applied only once per interface before distributing
the signals. The question of the applicability of the proposed scheme, based on a linear
decomposition of the signals, remains open and will be evaluated in the section devoted to
numerical results.
The numerical treatment at the boundaries when dealing with a non-linear system such as

the 1D shallow water �ow equations, follows closely the procedure described in Section 1.1.1
for the scalar case. In case of having a solid wall boundary condition no signal contributions
are allowed to cross the boundary and are accumulated at the boundary cell, for conservation
requirements where, afterwards, zero discharge is imposed. In case of dealing with a subcritical
inlet or outlet boundary, one variable is externally imposed as physical boundary condition
and the other variable is calculated using the updating information arriving to the boundary
cell from the neighbours; some of the contributions cross the boundary as in Section 1.1.1.
In case of having a supercritical outlet nothing is forced, the boundary cell is updated with
the contributions from upstream neighbours and the rest of the contributions are allowed to
cross the boundary.

1.5. One-dimensional test cases

1.5.1. An application to the linear wave equation. A numerical test case based on Equa-
tion (1) is �rst presented with f= �u using a uniform grid with 1000 cells, with a grid
spacing �x=1, a constant value of �=1 and initial condition

u(x; 0)=

{
2 if 1956x6205

1 otherwise

The simulation of the transport of this wave is performed using di�erent values of CFL, equal
to 0.95, 2.95, 4.95 and 9.95, according to the scheme proposed in Section 1.1. The results at
time t=600 s are shown on Figure 4, where it can be seen how the method becomes less
di�usive as the parameter CFL increases, and the wave is transported along the domain in
fewer steps. Table I displays the L1 and L∞ errors [16] computed comparing the numerical
solutions and the exact solutions. At the same time, there is a simple and linear gain in the
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Figure 4. Linear advection of a square wave at t=600 s for di�erent values of CFL.

Table I. L1 and L∞ errors.

CFL=0:95 CFL=2:95 CFL=4:95 CFL=9:95

L1 8,550 5,192 3,756 3,266
L∞ 0,522 0,455 0,441 0,440

time step size as the CFL number is increased in linear problems on regular grids. Things
are however di�erent otherwise.

1.5.2. Application to 1D shallow water equations

1.5.2.1. Ideal dam break. The dam break �ow subsequent to an initial 1m=5m surface level
discontinuity located at x650m in a �at and frictionless domain 100m long and 1m wide is
�rst presented. A uniform grid composed by 100 cells, �x=1 m is used and, following the
scheme discussed in Section 1.5, di�erent simulations are performed using di�erent values of
CFL. The boundaries act like solid walls, so that no �ux can cross them. Figure 5 shows
the comparison between the results of the water surface elevation D= z + h and the exact
solutions at di�erent times t=3 and 6 s (before interaction with the boundaries), for di�erent
values of CFL. At later times and when the value of the CFL increases over 8, the oscillations
and instabilities linked to the e�ect of the accumulation of waves at the boundaries, makes
the method fail. For values of CFL¡5:0 it can be seen that the di�erences in all cases
are negligible. Table II shows the errors L1 and L∞ obtained comparing the exact and the
numerical solution.
To illustrate how the instabilities are produced by the combination between high CFL values

and the proposed accumulation technique at the closed boundaries, Figure 6 shows the results
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Figure 5. Dam break results for di�erent values of CFL, NCELL=100.
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Table II. L1 and L∞ errors.

CFL=1 CFL=3 CFL=5 CFL=8

L1; t=3 s 2,33 2,09 2,38 5,59
L∞; t=3 s 0,21 0,26 0,29 0,41
L1; t=6 s 2,85 2,51 2,68 5,54
L∞; t=6 s 0,17 0,20 0,22 0,24

when the total length is increased to 1000m, using the same cell length and setting the initial
dam break at x=500m. The solutions at t=30 and 60s are compared with the exact solutions.
Again, when the value of the CFL increases over 8, the oscillations and instabilities produced
due to the e�ect of the accumulation make the method fail. Table III shows the errors L1
and L∞ obtained comparing the analytical and the numerical solution. This is clearly a present
day weakness of the method proposed and the best way to overcome it will be investigated
in future work.

1.5.2.2. MacDonald steady-state open channel test case. MacDonald [17] supplied a set
of realistic steady open channel �ow test cases with analytical solution very well suited to
validate the convergence of time-stepping schemes to steady state. The example used here
consists of a rectangular channel of width B=10 m and length L=150 m, discretized in 150
cells. The Manning friction parameter is n=0:03 (SI units) and the discharge is Q=20m3=s.
According to MacDonald [17] the steady-state water depth, in meters, is for 06x6100:

h(x)=0:741617− 0:25
tanh(3)

tanh
(
3
(x − 50)
50

)

and for 100¡x6150

h(x)= exp(−0:3(x − 100))
4∑
i=0
ki

(
(x − 100)
50

)i
+ 1:7 exp(0:005(x − 150))

with k0 =−0:253363, k1 =−1:18214, k2 = 5:99444, k3 =−118:907 and k4 = 61:738.
The bed slope analytical solution is

S0(x)=
(
1− Q2

9:08665(h(x))3B2

)
h′(x) +

Q2n2(B+ 2h(x))4=3

A10=3

and P and A in (38) become P=B+2h(x) and A=Bh(x). This solution corresponds to a sub-
critical upstream in�ow and a subcritical downstream out�ow that, due to the bed variations,
are connected by a smooth transition subcritical–supercritical followed by a discontinuous
transition (steady hydraulic jump) supercritical–subcritical inside the domain. The scheme is
applied starting from initial condition of uniform water depth, h(x; t=0)=1 m, and velocity
u(x; t=0)=2 m=s, in all the domain. The upstream and downstream external boundary con-
ditions are:

Q(x=0; t)=20 m3=s; h(x=L; t)=1:7 m
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Figure 6. Dam break results for di�erent values of CFL, NCELL=1000.
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Table III. L1 and L∞ errors.

CFL=1 CFL=3 CFL=5 CFL=8

L1; t=30 s 5,20 4,45 3,72 8,30
L∞; t=30 s 0,08 0,05 0,06 0,07
L1; t=60 s 24,63 25,30 25,71 29,97
L∞; t=60 s 0,09 0,11 0,11 0,12

Figure 7. MacDonald’s test case. Exact and numerical solution at t=1000 s for CFL=1, 3, 5 and 9.

Table IV. MacDonald’s test case. L1 and L∞ errors.

CFL=1 CFL=3 CFL=5 CFL=9

L1 3,344 2,149 2,066 2,449
L∞ 0,336 0,102 0,081 0,109

Figure 7 shows a plot of the numerical results for the water level surface, D, together with the
channel bottom level for di�erent values of CFL at t=1000 s when the steady state has been
reached. Table IV displays the numerical errors L1 and L∞ obtained comparing analytical and
the numerical solutions.
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2. NUMERICAL SCHEME. TWO-DIMENSIONAL CASE

2.1. Scalar equation

The 2D form of the scalar advection equation can be written as

@u
@t
+∇f = @u

@t
+ [·∇u=0; f =(fx; fy); [= df

du
(40)

The upwind method described in previous sections will be generalized to this case. For that
purpose the physical domain is discretized in triangular cells, as shown in Figure 8, and the
function is represented using piecewise constant values ui at the cells. The basic �rst order
explicit upwind scheme applied to (40), with reference to Figure 8 gives the following rule
for the updating of cell i:

Aiun+1i =Aiuni −
3∑
k=1
([̃n)−k (uk − ui)lk�t (41)

where ([̃n)−k represent the ingoing contributions from each surrounding edge k to cell i, Ai
is the cell area, nk is the outward normal vector to the cell edge and lk is the length of edge.
Equation (41) can be rearranged to

un+1i = uni −
3∑
k=1

(
�t
lk
Ai
�̃−
k

)
�uk = uni −

3∑
k=1
�k�uk (42)

with �̃−
k =([̃n)

−
k , �uk = uk − ui and �k =�t�̃−

k (lk=Ai). Also, the variable �k can be de�ned as
�k = int(�k). Note that �k is always a negative integer in the 2D model.
The classical CFL condition for explicit schemes on unstructured irregular grids states

�t=CFL�tmax; CFL61

with

�tmax =min{�tmax; i}i=1;NCELL

�tmax; i =min
{
Amin; k
|[n|klk

}
k=1;3

; Amin; k = min{Ak; Ai}
(43)

Figure 8. Domain discretization in triangles showing cell values and cell areas.
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The updating waves at an edge k, can be rewritten as

�k�uk =�k�uk + (�k − �k)�uk (44)

or

|�k�uk + (�k − �k)�uk |6Nk |�uk | (45)

with Nk =(1− �k). Assuming a uniform mesh, in the 1D case, Nk gives the number of cells
involved in the stencil, located in the direction given by �̃−

k , the �rst Nk −1 cells are updated
with �uk and the contribution to cell Nk is −(�k − �k)�uk . In the 2D case, the contribution at
a cell edge when |�k |¿0 must be spread among a number of cells given by

N2D; k =
−�∑
n=0
2n (46)

as explained below. It is worth signalling that this distribution must be performed in a gen-
uinely 2D form, hence requiring unstructured triangular grids. As in the 1D irregular mesh
case, when CFL values higher than one are sought, the parameters involved in the de�nition
of �tmax must change involving a higher number of cells.
In order to introduce the procedure in a simple way, let us describe it with reference to

Figure 9. When all the �̃−
k at the edges surrounding cell i are evaluated and only �̃−

k = �̃
−
3

is not null at the edge (i; 3). If, in a �rst case CFL61 and �3 = 1, the volume in cell i is
increased with the quantity �u3Ai, and uni is updated with �u3. Figure 9 shows the signal
advance when 1¡CFL62. This implies �k =−1, and N2D; k =N2D;3 = 3.
Following the previous philosophy, only the contribution �u3Ai is assigned to i, and the

quantity −Ai(�3 − �3)�u3 is shared by cells 1 and 2. As the method must be conservative in

Figure 9. 2D Signal distribution. 1¡CFL62.
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each cell, the following splitting is proposed:

�u3 updates cell i

−�1 AiA1 (�3 − �3)�u3 updates cell 1

−�2 AiA2 (�3 − �3)�u3 updates cell 2

(47)

The proportion of the signal assigned to cells 1 and 2 depends on the area of the involved
cells:

�1 =
A1

A2 + A1
¡1; �2 =

A1
A2 + A1

¡1 (48)

On the other hand, in order to develop a correct numerical method, it is necessary that

06
∣∣∣∣�j AiAj (�3 − �3)

∣∣∣∣61 j=1; 2 (49)

as this factor controls the contributions to the involved cells, otherwise oscillations can appear.
In a general situation, at every edge k of every cell i the following condition must be satis�ed:

06
∣∣∣∣AiAj (�k − �k)

∣∣∣∣61 j=1; 2 (50)

Taking into account that 06|�k − �k |61, the �rst option is to enforce Aj¿Ai, obviously
absurd. An alternative strategy is enforced by means of the search of Amin; k all over the cells
involved in the stencil, and condition (43) has to be based on

Amin; k = min{Ai; A1; A2; A3} (51)

for the example considered.
Now the contributions are bounded by

Ai
Aj

|�k |= lk |�
−
k |

Aj
�tmaxCFL=

Amin; k
Aj

CFL6CFL (52)

and, as �k = int(�k)

Ai
Aj

|�k − �k |= AiAj |�k | − Ai
Aj

|�k |6CFL− int(CFL)61 (53)

Equation (50) is satis�ed.
Furthermore, to smooth the size of the updating contributions in case of very irregular

meshes, the following condition is imposed over the �j coe�cients:

−�j AiAj (�k − �k)612 ; j=1; 2 (54)

As �j is a �xed shape factor (54) can be violated. The strategy in that case consists of
relaxing the value of the CFL until (54) is granted. Using (51) and (54) the waves are not
ampli�ed and instabilities are avoided if CFL is kept less or equal to 2.
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If the CFL value is chosen 2¡CFL63, then �3 =−2 and N2D;3 = 7. Figure 10 shows a
sketch of the distribution of the contributions from cell edge (i; 3) in this case, with �3 =−2.
To ensure that the distribution is made with no ampli�cation, the value of the time step must
be calculated involving all the stencil cell areas, using Amin; k as

Amin; k = min{Ai; A1; A1;1; A1;2; A2; A2;1; A2;2; A3} (55)

In this case, following a conservative criterion again,

�u3 updates cell i

(Ai=A1)�1�u3 updates cell 1

−(Ai=A1;1)�1�1;1(�3 − �3)�u3 updates cell 1; 1

−(Ai=A1;2)�1�1;2(�3 − �3)�u3 updates cell 1; 2

(Ai=A2)�2�u3 updates cell 2

−(Ai=A2;1)�2�2;1(�3 − �3)�u3 updates cell 2; 1

−(Ai=A2;2)�2�2;2(�3 − �3)�u3 updates cell 2; 2

(56)

where, for instance,

�1;1 =
A1;1

A1;1 + A1;2
¡1; �1;2 =

A1;2
A1;1 + A1;2

¡1 (57)

Figure 10. Signal volume distribution. 2¡CFL63.
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In order to avoid again too large contributions arising from very di�erent cell sizes, the
following condition is set for the four most distant cells from cell i:

− Ai
Aj; l

�j�j; l(�k − �k)614 ; j=1; 2 and l=1; 2 (58)

If (58) is not satis�ed, the CFL value is reduced.
For a general value of CFL, the time step must be de�ned based on the maximum number

of involved cells

Amin; k = min{Ai; Aj=1; N2D; k} (59)

and, according to the previously detailed philosophy, the following condition is imposed over
the 2−�k distribution coe�cients of the signals reaching the q farthest cells:

− Ai
Aj; l;:::; q

�j�j; l : : : �j; l;:::; q (�k − �k)62�k ; j=1; 2; l=1; 2 : : : q=1; 2 (60)

However, as will be seen in the following sections, in some cases condition (60) is not
su�cient to keep the solution free from oscillations. As the proposed scheme is highly ge-
ometry dependent, when the cell size varies strongly from cell to cell, condition (60) may
not be enough. To ensure a well-behaved solution, condition (60) must be extended to the
sets of cells that share the same contributions. Therefore, the following inequalities must be
simultaneously checked over the j; l; : : : ; q cells:

Ai
Aj
�j(�k − �k)6 1

2
; j=1; 2

Ai
Aj; l

�j�j; l(�k − �k)6 1
4
; j=1; 2; l=1; 2

...

− Ai
Aj; l; :::; q

�j�j; l · · ·�j; l; :::; q(�k − �k)6 2�k ; j=1; 2; l=1; 2 : : : q=1; 2

(61)

When, for a target CFL value, one inequality of the set in (61) is violated, the CFL value
must be reduced, leading automatically to a reduction in the number of involved cells, and
in consequence, to a reduction in the number of involved conditions.

2.2. Boundary conditions treatment

As in the 1D problem, in the case of open boundaries nothing special has to be done. When
the boundaries are closed or solid walls, the technique mentioned in Section 1.2 is also adapted
to 2D meshes. In this case, the boundary cell may have one or two edges acting like solid
walls (Figure 11). When two edges act like solid walls all the contributions are added to
the same cell (left part of Figure 11). If the boundary cell has a closed wall boundary edge
and an open boundary edge, some of the contributions are let to go out through the open
boundary (right part of Figure 11).
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Figure 11. Solid wall boundary conditions, with 1¡CFL62.

2.3. Scalar equation with source terms

When a source term S= S(u; x; y) is added to (40)

@u
@t
+ [·∇u= S(u; x; y) (62)

the resulting equation can be solved via an extension of the method outlined in Section 1.3:

un+1i = uni −
3∑
k=1
�k�uk +

3∑
k=1
S−
k
lk
Ai

(63)

with S−
k =

1
2Sk(�̃k − |�̃k |) and Sk a suitable discretization of the source term at cell edge k.

This equation can be transformed into

un+1i = uni −
NE∑
k=1
(�k�uk + �k�t) (64)

with �k =−S−
k (lk=Ai).

The scheme proposed here to propagate the signals, including the source term, from the
cell edges is the same as explained in Section 2.1 for the pure advection but corrected in the
way described for the 1D case with source terms. If, for instance, 1¡CFL62 as in Figure 9,
cell i would be updated with the quantity

(�u3 + (��t1)3) (65)

and cells 1 and 2 would receive, respectively,

−Ai
A1
�1(�3�u3 + (��t2)3); −Ai

A2
�2(�3�u3 + (��t2)3) (66)

being �t2; k =−(�k − �k)�t1; k and �t1; k =−(Ai=�̃−
k lk).

For bigger CFL values, the signals are transported taking into account the criteria and
conditions presented in the previous sections. Finally, it can be checked that, when �k =0
automatically �t2; k =�tmax.
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2.4. Application to a 2D system of equations with source terms

As in Section 1.4, it is assumed that Roe’s linearization can be used to decouple the hyperbolic
system

@U
@t
+
@F
@x
(U) +

@G
@y
(U)=S(x; y;U) (67)

by means of the normal �ux Jacobian matrix

Jn=
@F
@U
nx +

@G
@U

ny (68)

making possible the generation of an approximate matrix J∗
n , whose eigenvalues �̃

m an eigen-
vectors ẽm [2, 4], can be used to de�ne the signals, and also that an upwind treatment can be
done over the source terms. In this form (67) can be discretized following

Un+1i =Uni −
NE∑
k=1

∑
m
((�̃m−�m − �m)ẽm)nk)

lk
Ai
�t (69)

which can also be written as

Un+1i =Uni +
NE∑
k=1

∑
m
(�m�Um + Zm�t)nk (70)

where

Zm= lk
Ai
�mẽm and �m= �m− lk

Ai
�t

The value of 1−�mk , with �mk = int(�mk ) indicates the number of cells reached by the contribu-
tions generated by each component of �Uk , �Umk at each cell edge, according to the method
described in the previous sections. In this case, the search of the global parameter �tmax
involves all the eigenvalues, so that for each value of CFL the value of the time step must
be recalculated as

�t=CFL�tmax

with

�tmax =min {�tmax; i}i=1;NCELL

�tmax; i =min
{
Amin; k
|[n|klk

}
k=1;3

; Amin; k = min{Ai; Aj=1; N2D; k}
(71)

Again, taking in account (60), the next condition must be ensured for each m wave over
the 2−�k distribution coe�cients of the signals reaching the q farthest cells:

− Ai
Aj; l; :::; q

�j�j; l : : : �j; l;:::; q(�mk − �mk )62�
m
k ; j=1; 2; l=1; 2 : : : q=1; 2 (72)
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or, following the most strict criteria in (61)

Ai
Aj
�j(�mk − �mk )6

1
2
; j=1; 2

Ai
Aj; l

�j�j; l(�mk − �mk )6
1
4
; j=1; 2; l=1; 2

...

− Ai
Aj; l; :::; q

�j�j; l : : : �j; l; :::; q(�mk − �mk )6 2�
m
k ; j=1; 2; l=1; 2 : : : q=1; 2

(73)

For both criteria, if for a target CFL value one inequality is violated, the time step must be
reduced.
The source terms are involved through the coe�cients

�tm2; k =−(�mk − �mk )�tm1; k ; �tm1; k =− Ai
�̃−
k lk

(74)

according to the method previously described. It can be checked that, when �mk =0, automat-
ically �tm2; k =�tmax. Bigger values of CFL involve more cells, and each component of �Uk
must have an analogous treatment as explained in previous sections.

2.5. In�uence of the mesh

The simulation of 2D problems using techniques based on �nite di�erence methods or struc-
tured �nite volumes has a clear dependence on the mesh used. The domain is divided into
cells and the updating waves are computed following the normal vector to their edges and
depending on the cells size. In recent times, the introduction of unstructured meshes has re-
duced this in�uence, by means of directionless elements, in special those created by Delaunay
solvers [18]. The in�uence of the mesh in the solution is, however, more evident when values
of CFL¿ 1 are used in the context of a method such as the one presented in this work, and
two essential factors are found: the direction of the normal vector to the cell edge and the
cell area.
In practice, it is impossible to make the waves advance farther than the adjacent cell in

structured meshes, as the wave direction, completely dominated by the geometry mesh, is gov-
erned by the x and y aligned edges. This tendency is also noticeable on unstructured meshes
generated by means of frontal-advancing solvers, where the advance can generate cells follow-
ing the main directions. As the numerical contributions between cells are computed following
the normal to the edges, the equations are forced to give solutions depending on the direction
of those normals, that is, aligned in some way with the main axis, avoiding the possibility
of transporting the waves in other directions. In meshes generated by means of a Delaunay
solver it is possible the use of values of CFL¿1 since, even though local main directions
can appear, they can be avoided by means of retriangularization. The retriangularization can
be simply done by adding nodes at the geometrical centre of each cell. Furthermore, another
geometric parameter has to be taken into account: the uniformity in the cell size. Condi-
tions (60) and (61) lead to maximum values of CFL when the cell areas are of uniform size
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and lead to distribution coe�cients � approximately equal to 1=2. When local mesh re�ne-
ment is required, the quality of the mesh is given by the maximum smoothness in the cell
size variation.

2.6. Application to 2D shallow water equations

The 2D shallow water equations, which represent vertically averaged mass and momentum
conservation, form a system like (67) with:

U= (h; qx; qy)T

F=
(
qx;
q2x
h
+
gh2

2
;
qxqy
h

)T
; G=

(
qy;
qxqy
h
;
q2y
h
+
gh2

2

)T (75)

where qx= uh and qy= vh. The variable h represents the water depth, g is the acceleration
of the gravity and (u; v) are the averaged components of the velocity vector u along the x
and y coordinates, respectively. The source terms in the momentum equations are the bed
slopes and the friction losses along the two coordinate directions,

S=(0; gh(S0x − Sfx); gh(S0y − Sfy))T (76)

where

S0x=−@z
@x
; S0y=− @z

@y

and the friction losses in terms of the Manning’s roughness coe�cient, with

Sfx= n2u
√
u2 + v2=h4=3; Sfy= n2v

√
u2 + v2=h4=3

The system has a normal �ux Jacobian matrix, Jn, whose eigenvalues are a representation of
the characteristic speeds. The details and speci�c form of the involved variables can be found
for instance in References [2, 4].
The source term vector can also be decomposed in two di�erent parts that will be treated

separately: those based on spatial derivatives, such as the bottom variations B and the rest, in
our case the friction term R, S=B+R. An upwind approach has been adopted to model the
bottom variations in order to ensure the best balance with the �ux terms at least in steady-state
cases. The friction term R is discretized in a pointwise manner, so that the �nal expression
for the numerical scheme is

Un+1i =Uni −
NE∑
k=1

3∑
m=1
((�̃m−Qm − �m−)ẽm)nk

dsk
Ai
�t +�t(R)ni (77)

This expression is a rule to update the value of the conserved variables in each cell using the
information only from the surrounding cell edges, when the value of the parameter CFL is
less or equal one. When this parameter is increased, the technique to follow is detailed in the
previous sections, taking into account that the CFL applied produces variations in the value
of �tmax.
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2.7. Two-dimensional test cases

2.7.1. Application to the 2D linear advection equation. A periodic wave is transported
through a square domain de�ned by 06x61 and 06y61. A constant and uniform diag-
onal advection velocity [=(1; 1)T is used to advect the initial condition de�ned by

u(x; y; 0)= cos(2	x) cos(2	y)

Periodic boundary conditions are imposed to ensure that the initial solution, (Figure 12, left),
and the solution after every second are equal, as the periodic wave returns to its initial position.
The domain was discretized by a Delaunay mesh solver (BAMG) in 2024 cells (Figure 12,
right).
The data in the elements are initializated to the average value of the exact solution over

each triangle and the errors are computed by comparing the average exact solution with the
numerical piecewise constant values at each cell after the �rst period. Table V shows the CFL
attained when a target CFL value is set and (60) or (61) is enforced. It also displays how, in
general, the error decreases to a limit as the CFL increases. Figure 13 displays the contour
plot solutions after one period, for di�erent values of CFL, and how the peak amplitude is
better preserved when the CFL grows.

Figure 12. Initial and exact solution every second (left) and mesh discretization (right).

Table V. Maximum CFL attained depending on the target CFL.

Target CFL Max. CFL (60) Max. CFL (61) L1 (60) L1 (61) L∞ (60) L∞ (61)

1 1 1 0,049 0,049 0,321 0,321
2 2 2 0,040 0,040 0,222 0,222
3 2.572 2.572 0,039 0,039 0,177 0,177
4 2.653 2.572 0,038 0,039 0,182 0,177
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Figure 13. Exact solution (a) and numerical solution using CFL=1 (b), CFL=2 (c), CFL=3 (d) and
CFL=4 (e), after one period using condition (60).

2.7.2. Application to the 2D shallow water equations

2.7.2.1. Steady-state test case. A 2D steady �ow test case with analytical solution is used
to validate the convergence of the proposed scheme. The �ow discharge is constant in all the
domain and equal to

qx(x; y)= qx; qy(x; y)= qy

and the steady-state water depth and bed slope analytical functions are

h(x; y)= a+ qxx + qyy; z(x; y)=− 1
2g
(q2x + q

2
y) + 2g(a+ qxx + qyy)

3

(a+ qxx + qyy)2

The performance of the scheme is tested using qx=0:3, qy=0:4 and a=1, in a squared
domain, de�ned by 06x610 and 06y610. The assumed values correspond to an almost
diagonal subcritical �ow over a frictionless bottom of variable bed slope in which two sides
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of the domain are inlet open boundaries and the other two sides are outlet open boundaries.
This domain was discretized using the same Delaunay mesh solver (BAMG). To ensure that
no privileged directions were presented, the initial mesh was retriangularizated leading to 4602
cells. The steady water level is computed starting from initial condition of still water:

h(x; y; 0) + z(x; y; 0) = 0
u(x; y; 0)=0; v(x; y; 0) = 0

To achieve the desired solution the unit discharges are the conditions imposed at the bound-
aries of the domain (subcritical �ow). Figure 14 shows a 3D view of the exact solution of
the water surface level (a), the contour plot of the bottom level (b) and a detail of the mesh
discretization (c).
The error in the water depth is computed comparing the average exact solution of the water

depth with the numerical piecewise constant values de�ned in each cell when the steady state
has been achieved at time t=200 s. Table VI shows the L1 error and the L∞ error versus
the target CFL value. The results obtained using (72) and (73) are the same for target CFL
values equal to 1, 2 and 3. When (73) is enforced, the results for values of CFL¿3 are equal.
No values are displayed for values of CFL¿3 for condition (72), as in this example (72) is
not strong enough to guarantee stability and the performance fails.

Figure 14. (a) 3D view of the steady water surface level; (b) bottom level;
and (c) mesh discretization detail.
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Table VI. Evolution of the L1 and L∞ errors for various values of CFL.

Target CFL L1 (72) L1 (73) L∞ (72) L∞ (73)

1 0,0972859 0,0972859 0,001292 0,001292
2 0,0972859 0,0972859 0,001292 0,001292
3 0,0972859 0,0972859 0,001292 0,001292
4 —– 0,0972859 —– 0,001292

Figure 15. Evolution of the time step size in time (left) and evolution of
the maximum allowable CFL using (73).

The magnitude of the time step and the maximum CFL value achieved are displayed in
Figure 15 for target values of CFL=1, 2, 3 and 4 when (73) is enforced. In this case the
results for values of CFL=3 and 4 are identical due to the CFL reduction induced by the
grid-dependent condition (73); bigger values of the target CFL parameter lead to the same
limitation in this example.
Figure 16 shows the contour plots of the water depth for the exact solution using the

proposed scheme with CFL=3 and condition (73). Despite the di�erent magnitude in the
time step when using the method for various CFL values, no di�erences are found between
the numerical solutions.

2.7.2.2. Asymmetric dam break in a laboratory model. The next validation test case for
the proposed model deals with a 2D dam break �ow problem. The experiment was carried
out at the CITEEC, Coruña, Spain [19]. The set-up consists of a closed pool divided in two
parts (Figure 17, left) by a removable gate. In this case the bed is plain. The experiment was
performed for an initial depth ratio of 0:5=0:1 m assuming a Manning roughness parameter
n=0:01. The initial mesh was generated using a Delaunay solver (Triangle) and retriangular-
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Figure 16. Exact water depth in meters (left) and water depth computed using CFL=3
at t=200 s (right) and condition (73).

Figure 17. Model geometry (left) and detail of the mesh (right).

izated as indicated above leading to 7875 cells (Figure 17, right). The results are compared
with the measures provided by 17 gauge points distributed all over the domain (Figure 17,
left).
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Figure 18 (left) shows the variation of the time step in function of time, for target val-
ues of CFL 1, 2, 3 and 4. In this case, condition (72) is su�cient, and conditions (72)
and (73) lead to the same result. Figure 18 (right) also displays the maximum CFL al-
lowed for various values of target CFL. As can be seen from the �gure, the target value
of CFL=4 is the �rst to be a�ected by the grid-dependent restrictions imposed by condi-
tion (72). Values of the target parameter above 4 would lead to the same actual time step
size.
Figure 19 shows contour level maps of water level at di�erent times using target values

of CFL 1 and 4. Figure 20 shows 3D plots of the water surface at time 2 s for both values
of CFL. As it can be seen, the di�erences between them are negligible. The same conclusion
is achieved about the vector velocity maps shown in Figure 21. The comparison between
numerical results and experimental data at some gauging points of the physical model is
displayed in Figure 22, where the numerical results for the di�erent values of CFL are
coincident in a single line.

2.7.2.3. Dam break in a constricted channel. Next application deals again with a dam
break problem in a channel with a severe constriction that notably a�ects the propagation
of the wave. The construction and the experimental measures in this test case were devel-
oped in the Laboratorio Nacional de Ingenieria Civil, Lisbon (Portugal) [20]. The channel
presents no slope, and the walls are high enough to avoid the �ow from crossing the bound-
aries (Figure 23). The wave advance produced by the dam break is re�ected partially by the
narrowing, and the wave su�ers attenuation in its downstream advance. The roughness param-
eter n assumed is 0.01 (SI units). Again, an initial mesh is generated using a Delaunay solver
(Triangle) and, to ensure that no privileged directions are present, is retriangularizated. The
�nal computational mesh contains 42 621 cells. The results are compared with the measures
provided by 4 gauges distributed along the axis of the domain. A removable gate is located
at x=6:1 m, the initial water level is 0:3 m upstream of the gate and 0:003 m downstream
of it.

Figure 18. Evolution of the time step (left) and the maximum allowable CFL (right), using (72) or (73).
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Figure 19. Water level, in meters, at times t = 1, 2, 4 and 8 s, for values of
CFL=1 (left column) and 4 (right column).
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Figure 20. Surface water levels at time 2 s, computed with CFL=1 and 4.

Figure 21. Velocity vectors at time 4 s, computed with CFL=1 (left) and 4 (right).

Figure 24 shows the variation of the time step and the variation of the maximum allowed
CFL in function of time, for target values of CFL 1, 2, 3, and 4. The previous tendencies
are found in this new case, and both conditions (72) and (73) produce the same variations
in the time step.
The iso-level maps shown in Figure 25 and the 3D plots shown in Figure 26 present

almost imperceptible di�erences in the results for CFL 1 or 4. Also, the vector velocity
maps displayed in Figure 27 are almost identical despite the variation of the parameter CFL.
The results for the di�erent values of CFL are compared with the measures provided by
the 4 gauges in Figure 28. Although the numerical solution is not able to reproduce all the
details of the experimental evolution in water depth, this is due to a limitation in the shallow
water applicability to this case and not to the numerical technique. The results show almost
imperceptible di�erences for all the CFL values tested.

2.7.2.4. Variable bottom in the constricted channel dam-break. To see how the proposed
scheme deals with highly variable bed slope in presence of transient �ow a last numerical
experiment is performed using the same mesh and geometry of the previous case with a
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Figure 22. Comparison between experimental data and numerical data for CFL=1 and 4.

Figure 23. Model geometry (left) and mesh detail (right).
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Figure 24. Evolution of the time step (left) and maximum allowable CFL (right)
in function of time using (72) or (73).

Figure 25. Water levels, in meters, at times t=5, and 7 s, for values of CFL=1 and 4.

variable bottom slope. The assumed bed level z is de�ned by a hypothetical function of X ,
X =(x; y) in meters as

z(X )=−0:15 + 0:075 sin�1 + 0:05 sin�2

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:63–102



EXTENSION OF AN EXPLICIT FINITE VOLUME METHOD TO LARGE TIME STEPS 97

Figure 26. Surface water levels at time 7 s, computed with CFL=1 and 4.

Figure 27. Velocity vector maps at time 7 s, computed with CFL=1 and 4.

where X0 = (0; 0:25), �1 = 4	‖X − X0‖, �y=(y − 0:25) and �2 =	|�y| sin(�1). In this case
the discontinuity is located closer to the throat of the channel, at x=10 m. Figure 29 shows
a detail of the bed in the throat region. The bed level variations exaggerate the 2D character
of the �ow in the channel.
The existence of a bed slope changes the properties of the �ow and the range of the max-

imum allowed CFL value, but the same tendencies are found. Figure 30 shows the variation
of the time step in function of time (left), for target CFL values 1, 2, 3, and 4, enforcing
condition (72). The results imposed using condition (73) are equal for the target CFL values
1, 2 and 3, but for values greater than 3 the maximum allowable time step does not increase.
The iso-level maps in Figure 31, the 3D images in Figure 32, and the vector velocity maps
in Figure 33, show again almost imperceptible di�erences.
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Figure 28. Comparison between experimental data and numerical data for CFL=1 and 4.

Figure 29. Channel bottom.
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Figure 30. Evolution of the time step (left) and maximum allowable
CFL (right) in function of time using (72).

Figure 31. Water surface levels at times t=2, 2.4 and 2:8 s, for values of CFL=1 and 4.
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Figure 32. Surface water levels at time 2:8 s, computed with CFL=1 and 4.

Figure 33. Velocity vector maps at time 2:8 s, computed with CFL=1 and 4.

3. CONCLUSIONS

An extension of the �rst order explicit upwind scheme to CFL values greater than 1 has been
presented. It has been developed for one and two-dimensional models and applied to linear
and non-linear problems discretized on irregular grids. The basic idea linked to the concept of
the CFL restrictions for numerical stability in explicit schemes has been revisited. The CFL
value is directly related to the extent of the stencil of grid cells involved in one time step. An
existing idea of formulating upwind schemes as wave propagations arising from discontinuities
in the variables at cell interfaces has been generalized. From the analysis performed, a �rst
conclusion is that it is very important to properly de�ne in each case the reference time step
used to state the dimensionless CFL number and that it must always be estimated on the basis
of the mentioned stencil. This is crucial when moving from the basic linear case onto regular
grids to any other case.
The second important conclusion of our work is that, as the cell interface waves or signals

are distributed to more and more neighbour cells as the CFL increases, the numerical solution
is extremely grid dependent. This dependence leads to great errors when using structured grids
in 2D applications. Hence, the present tool must be used on anisotropic unstructured grids.
This can be considered a weakness of the method since a suitable grid generator must be
available.
The resulting technique has been applied to transient linear examples in 1D and 2D as well

as to steady and unsteady non-linear shallow water test cases with and without source terms.
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The results obtained indicate that this method is a useful and robust tool easy to implement
as an extension of a previous explicit model of the upwind type in order to relax the stability
restrictions over the time step size. The quality of the results is also useful to demonstrate
that the linear superposition of waves in which the method is based is a good approximation
and does not lead to errors in non-linear cases. The numerical results show that the technique
is able to reproduce non-linear �ow discontinuities with CFL¿1 as e�ciently as it does with
CFL¡1.
Some numerical di�culties have been encountered at solid wall boundaries when using

high CFL values. This can be considered a second disadvantage of the method but the way
to overcome it is envisaged. The results that can be obtained have been illustrated by means
of the application to the scalar advection equation and the shallow water systems with source
terms both in one and two-dimensions. Actual work in preparation deals with an exhaustive
identi�cation of the behaviour of the numerical solutions provided by this method and those
obtained with second order schemes as well as the in�uence of grid re�nement.
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